AN INTEGRAL FORMULA

HARLEY FLANDERS

The following results generalize in several directions a recent formula of Richard Kraft [3, Lemma 1] used in a problem of geometrical optics.

Theorem 1. Let M be a compact n-manifold imbedded in a Euclidean (n+1)-space E^{n+1} , where n > 1. For each $x \in M$, let e = e(x) be the outward unit normal, r = |x|, and $p = p(x) = x \cdot e$, the support function. Also let σ denote the element of n-volume. Then

$$\frac{1}{V_n} \int_{M} \frac{px}{r^{n+2}} \sigma = \begin{cases} \mathbf{0} & \text{if } \mathbf{0} \in M, \\ -\mathbf{e}(\mathbf{0}) & \text{if } \mathbf{0} \in M, \end{cases}$$

where $V_n = \pi^{n/2}/\Gamma(\frac{1}{2}n+1)$ is the volume of the unit n-ball.

Our proof will be based on two formal lemmas. We shall denote by $[v_1, \dots, v_n]$ the cross (vector) product of n vectors in E^{n+1} , assumed oriented. As usual, we extend this alternating multilinear function to vectors with differential form coefficients by

$$[\alpha_1 \mathbf{v}_1, \cdots, \alpha_n \mathbf{v}_n] = (\alpha_1 \wedge \cdots \wedge \alpha_n)[\mathbf{v}_1, \cdots, \mathbf{v}_n].$$

We refer to Flanders [1, pp. 43, 149] and [2] for this formalism.

Lemma 1. On M we have

$$n(x \cdot dx) \wedge [x, dx, \dots, dx] = r^2[dx, \dots, dx] - n! px\sigma.$$

Proof. We shall give more detail than is really necessary, because the probability of an error in sign is high in calculations of this type.

Let e_1, \dots, e_n be a moving orthonormal frame on M, so

$$x = p_i e_i + p e$$
, $dx = \sigma_i e_i$,

where the σ_i are one-forms, and repeated indices are summed. Note that $\sigma_1 \wedge \cdots \wedge \sigma_n = \sigma$ is the volume element on M. We take the e_i so that e_1, \dots, e_n, e is a right-handed frame for E^{n+1} . Then $[e_1, \dots, e_n] = e$. We also note for future reference that

$$[e,e_1,\cdots,\hat{e}_i,\cdots,e_n]=(-1)^ie_i,$$

Received May 3, 1972.

because it requires (n-i) + n transpositions to pass from $e, e_1, \dots, \hat{e}_i, \dots$ e_n, e_i to e_1, \dots, e_n, e . (The circumflex denotes omission.)

We have

$$(x \cdot dx) \wedge [x, dx, \dots, dx]$$

$$= (p_i \sigma_i) \wedge \{ [p_i e_i, \sigma_j e_j, \dots, \sigma_k e_k] + p[e, \sigma_j e_j, \dots, \sigma_k e_k] \}.$$

Now

$$[p_{i}e_{i}, \sigma_{j}e_{j}, \dots, \sigma_{k}e_{k}]$$

$$= p_{i}(\sigma_{j} \wedge \dots \wedge \sigma_{k})[e_{i}, e_{j}, \dots, e_{k}]$$

$$= (n-1)! \sum_{i} p_{i}(\sigma_{1} \wedge \dots \wedge \hat{\sigma}_{i} \wedge \dots \wedge \sigma_{n})[e_{i}, e_{1}, \dots \hat{e}_{i}, \dots, e_{n}]$$

$$= (n-1)! \left(\sum_{i} (-1)^{i-1}p_{i}\sigma_{1} \wedge \dots \wedge \hat{\sigma}_{i} \wedge \dots \wedge \sigma_{n}\right)e,$$

hence

$$(p_i\sigma_i) \wedge [p_ie_i, \sigma_je_j, \cdots, \sigma_ke_k] = (n-1)!(\sum p_i^2)\sigma e$$
.

Next,

$$[e, \sigma_{j}e_{j}, \dots, \sigma_{k}e_{k}]$$

$$= (\sigma_{j} \wedge \dots \wedge \sigma_{k})[e, e_{j}, \dots, e_{k}]$$

$$= (n-1)! \sum_{i} (\sigma_{1} \wedge \dots \wedge \hat{\sigma}_{i} \wedge \dots \wedge \sigma_{n})[e, e_{1}, \dots, \hat{e}_{i}, \dots, e_{n}]$$

$$= (n-1)! \sum_{i} (-1)^{i} (\sigma_{1} \wedge \dots \wedge \hat{\sigma}_{i} \wedge \dots \wedge \sigma_{n})e_{i},$$

hence

$$(p_i\sigma_i) \wedge [e,\sigma_je_j,\cdots,\sigma_ke_k] = -(n-1)! \sigma(p_ie_i)$$
.

Consequently

$$(\mathbf{x} \cdot d\mathbf{x}) \wedge [\mathbf{x}, d\mathbf{x}, \cdots, d\mathbf{x}] = (n-1)! \left[\left(\sum p_i^2 \right) \mathbf{e} - p(p_i \mathbf{e}_i) \right] \sigma$$
$$= (n-1)! \left(r^2 \mathbf{e} - p \mathbf{x} \right) \sigma.$$

Since $[dx, \dots, dx] = n! \sigma e$, the lemma follows.

Lemma 2. On M we have

$$n! r^{-(n+2)} p x \sigma = d(r^{-n}[x, dx, \cdots, dx]) .$$

Proof. Applying d and using Lemma 1 we obtain

$$d(r^{-n}[x, dx, \dots, dx])$$
= $-nr^{-(n+2)}(x \cdot dx) \wedge [x, dx, \dots, dx] + r^{-n}[dx, \dots, dx]$
= $-r^{-n}[dx, \dots, dx] + n! r^{-(n+2)}px\sigma + r^{-n}[dx, \dots, dx]$
= $n! r^{-(n+2)}px\sigma$.

Proof of Theorem 1. If $0 \notin M$, then the integrand is exact on M by Lemma 2, so the integral is zero. If $0 \in M$, the integrand is singular at 0. We choose ε so small that $\{r = \varepsilon\} \cap M$ is an (n-1)-sphere and set $M_{\varepsilon} = M \setminus \{r < \varepsilon\}$. By the lemma and two applications for Stokes's theorem,

$$\int_{M_{\epsilon}} \frac{px}{r^{n+2}} \sigma = \frac{1}{n!} \int_{M_{\epsilon}} d\left(\frac{1}{r^{n}}[x, dx, \dots, dx]\right)$$

$$= \frac{1}{n!} \int_{\partial M_{\epsilon}} \frac{1}{r^{n}}[x, dx, \dots, dx] = -\frac{1}{n!} \int_{r=\epsilon} \frac{1}{r^{n}}[x, dx, \dots, dx]$$

$$= \frac{-1}{n!} \int_{r=\epsilon} [x, dx, \dots, dx] = \frac{-1}{n!} \int_{r\leq\epsilon} [dx, dx, \dots, dx]$$

$$= \frac{-1}{n!} \int_{r\leq\epsilon} n! \ e\sigma \approx \frac{-1}{\epsilon^{n}} e(\mathbf{0}) \int_{r\leq\epsilon} \sigma \approx \frac{-1}{\epsilon^{n}} (\epsilon^{n} V_{n}) e(\mathbf{0}) \to -V_{n} e(\mathbf{0}) \ .$$

It is clear that the convergence is absolute as $\varepsilon \to 0$ so that $M_{\varepsilon} \to M$. Therefore any other family M'_{ε} converging to M would yield the same value for the singular integral.

Corollary. If $x_0 \in M$, then

$$\frac{1}{V_n}\int\limits_{x}\frac{(x-x_0)\cdot e}{|x-x_0|^{n+2}}xd\sigma=-e(x_0).$$

These results can be extended without difficulty to immersed rather than imbedded orientable hypersurfaces. The case of a closed curve is special.

Theorem 2. Let C be a simple closed smooth counter-clockwise curve in E^2 with Frenet frame t, n at x. Set $p = -x \cdot n$, r = |x|, and J the 90° rotation. Then

$$\frac{1}{2}\int_{C}\frac{p}{r^{3}}J(x)ds = \begin{cases} \mathbf{0} & \text{if } \mathbf{0} \notin C, \\ -\mathbf{t}(\mathbf{0}) & \text{if } \mathbf{0} \in C. \end{cases}$$

Proof. Write x = at - pn. Then dx = tds, $r^2 = a^2 + p^2$, $rdr = x \cdot dx = ads$, and

$$d(r^{-1}x) = -ar^{-3}dsx + r^{-1}dst = r^{-3}[-a(at - pn) + (a^{2} + p^{2})t]ds$$

= $pr^{-3}(pt + an)ds = pr^{-3}J(x)ds$.

The theorem follows easily.

References

- [1] H. Flanders, Differential forms with applications to the physical sciences, Academic Press, New York, 1963.
 [2] —, The Steiner point of a closed hypersurface, Mathematika 13 (1966) 181-
- 186.
- [3] R. Kraft, Uniqueness and existence for the integral equation of interreflections, SIAM J. Math. Anal., to appear.

TEL AVIV UUIVERSITY